Querying Heterogeneous Information Sources Using
Source Descriptions

Alon Y. Levy Anand Rajaraman® Joann J. Ordille
AT&T Laboratories Stanford University Bell Laboratories
levy@research.att.com anand@cs.stanford.edu joann@research.att.com
Abstract

We witness a rapid increase in the number of structured information sources that are avail-
able online, especially on the WWW. These sources include commercial databases on product
information, stock market information, real estate, automobiles, and entertainment. We would
like to use the data stored in these databases to answer complex queries that go beyond keyword
searches. We face the following challenges: (1) Several information sources store interrelated
data, and any query-answering system must understand the relationships between their con-
tents. (2) Many sources are not full-featured database systems and can answer only a small set
of queries over their data (for example, forms on the WWW restrict the set of queries one can
ask). (3) Since the number of sources is very large, effective techniques are needed to prune the
set of information sources accessed to answer a query. (4) The details of interacting with each
source vary greatly.

We describe the Information Manifold, an implemented system that provides uniform access
to a heterogeneous collection of more than 100 information sources, many of them on the WWW.
IM tackles the above problems by providing a mechanism to describe declaratively the contents
and query capabilities of available information sources. There is a clean separation between the
declarative source description and the actual details of interacting with an information source.
We describe algorithms that use the source descriptions to prune efficiently the set of information
sources for a given query and practical algorithms to generate executable query plans. The query
plans we generate can involve querying several information sources and combining their answers.
We also present experimental studies that indicate that the architecture and algorithms used in
the Information Manifold scale up well to several hundred information sources.

1 Introduction

We witness a rapid increase in the number of structured information sources that are available
online. The World-Wide Web (WWW), in particular, is a popular medium for interacting with such
sources. The WWW is usually regarded as an interconnected collection of unstructured documents.
However, a large number of structured information sources are now becoming available on the Web.!
These sources include both free and commercial databases on product information, stock market
information, real estate, automobiles, and entertainment. The interface to such sources is typically
a collection of fill-out forms. The query answer usually takes the form of an HTML document that

*Part of this work was done while this author was visiting AT&T Bell Laboratories.
L Seeshtbpry//wwwmintbencon/sleuth/ for an index that focuses mostly on such sources.

www.manaraa.com

Source 1: Used cars for sale.
Accepts as input a category or model of car, and optionally a price range and a year range.
For each car that satisfies the conditions, gives model, year, price, and seller contact information.

Source 2: Luxury cars for sale. All cars in this database are priced above $20,000
Accepts as input a category of car and an optional price range.
For each car that satisfies the conditions, gives model, year, price, and seller contact information.

Source 3: Vintage cars for sale (cars manufactured before 1950).
Accepts as input a model and an optional year range.
Gives model, year, price, and seller contact information for qualifying cars.

Source 4: Motorcycles for sale.
Accepts as input a model and an optional price range.
Gives model, year, price, and seller contact information.

Source 5: Car reviews database. Contains reviews for cars manufactured after 1990.
Accepts as input a model and a year.
Output is a car review for that model and year.

Figure 1: A set of related information sources. These information sources are typical of those found

on the World-Wide Web.

is very structured, and can be parsed and converted into a set of tuples or more complex data types
(e.g., using techniques such as [ACM93, RU96]). There are other structured information sources
that are available not on the WWW such as name servers, bibliographic sources, and university-wide
and company-wide information systems, and they too provide query interfaces.

Most search tools available for the WWW today (e.g., AltaVista, Lycos, Inktomi) are based
on keyword search, and much research has been devoted to efficient techniques for indexing large
collections of documents (e.g., [GGMT94, BDMS94]). Keyword search is a useful way to search
a collection of unstructured documents, but is not effective with structured sources. Currently,
the interaction with such a large collection of structured sources is done manually. The user must
consider the list of sources available, decide which ones to access, interact with each one individually,
and manually combine answers from different sources. We would like to use the data stored in these
databases to answer complex queries, and provide a uniform interface to the sources. In particular,
the user should be able to express what he or she wants, and the system will find the relevant
sources and obtain the answers, possibly by combining data from multiple sources.

Example 1.1 Suppose we are interested in purchasing a car. The parameters of interest to us
are the category of the car (sportscar or sedan), the price, the year of manufacture, the model,
and the car reviews. We ask query (): Get the price and reviews of sportscars for sale that were
manufactured no earlier than 1992. Suppose we have access to the online information sources shown
in Figure 1, among many others.

Some of the sources are obviously not useful to answer). We can straightaway determine that
Source 4 is not useful to answer this query, because it has no information about cars. We can also
conclude that Source 3 is not relevant. Here the reasoning is more subtle: we are interested only in
cars manufactured after 1992, whereas Source 4 has information only on cars manufactured before
1950 Wesaredeftmwithssourcessl , 2, and 5 and two possible plans to answer :

www.manaraa.com

1. Ask Source 1 for the models and prices of all sportscars manufactured after 1992. For each
model, obtain a review from the Source 5. Produce a set of (Model, Price, ProductReview)
tuples.

2. Ask Source 2 for the models, years, and prices of sportscars. From the (Model, Year, Price)
tuples that result, select only those where Year > 1992. For each model in the selected tuples,
obtain a review from Source 5. Produce a set of (Model, Price, ProductReview) tuples.

Notice that in plan 1 we took advantage of the capability of Source 1 to select a specified year
range, whereas in plan 2 we had to do the selection ourselves because Source 2 cannot do it for
us. Also note that the outputs of Sources 1 and 2 are enough to satisfy the inputs requirements of
Source 5 (i.e., the year and model of the car). For example, if Source 5 would also require more
specific information about the car (e.g., number of doors, engine type) in order to return a review,
we would not be able to combine information from these three sources. It is possible to verify that
these are the only two query plans to answer () using these information sources. The answer to @)
is the union of the sets of tuples produced by executing these two plans. O

Some of the challenges involved in providing uniform access to a large collection of information
sources are:

1. Several information sources store interrelated data, and any query-answering system must
understand and exploit the relationships between their contents. In particular, since the
number of sources is very large, we must have enough information about the sources that
enables us to prune the sources accessed in answering a specific query, and we must have
effective techniques for prunning sources.

2. Many sources are not full-featured database systems and can answer only a small set of
queries over their data (for example, forms on the WWW restrict the set of queries one can
ask). Moreover, most sources contain incomplete information. For example, there are several
information sources advertising cars for sale. No single source contains information on all
cars for sale.

This paper describes the Information Manifold (IM), a fully implemented system that provides
uniform access to a heterogeneous collection of more than 100 information sources, many of them
on the WWW. IM tackles the above problems by providing a mechanism to describe declaratively
the contents and query capabilities of available information sources. There is a clean separation
between the declarative source description and the actual details of interacting with an information
source. The system uses the source descriptions to prune efficiently the set of information sources
for a given query and to generate executable query plans. The query plans we generate can involve
querying several information sources and combining their answers. The contributions of this paper
are the following;:

1. A practical mechanism to describe declaratively the contents and query capabilities of infor-
mation sources. In particular, the contents of the sources are described as queries over a set
of relations and classes. Consequently, it is possible to model the fine-grained distinctions
between the contents of different sources, and it is easy to add and delete sources. Modeling
the query capabilities of information sources is crucial in order to interact with many existing
sources.

www.manaraa.com

2. An efficient algorithm that uses the source descriptions to create query plans that can access
several information sources to answer a query. The algorithm prunes the sources that are
accessed to answer the query, and considers the capabilities of the different sources. The
problem of creating query plans is closely related to the problem of answering queries using
views [YLR7, CKPS95, LMSS95, RSU95, Qia95] which was shown to be computationally
expensive. One of our contributions is an algorithm that is designed to scale up well in
practice to a large number of information sources.

3. Experiments that show that our query planning algorithm will scale up as the number of
information sources increases. The experiments show the performance of our query planning
algorithm using 100 information sources, most of which are on the WWW.

There are several issues to be addressed in providing a uniform interface to multiple information
sources, many of which are not addressed in this paper. In particular, the goal of Information Man-
ifold is to provide only a query interface, and not update or transaction facilities. As a consequence,
we do not address issues such as consistency and transaction processing which are addressed by
research on multidatabase systems. Issues of security and payment for information are also beyond
the scope of this paper.

An important issue that is addressed in our system but we do not discuss in this paper is
how we decide that two constants in two different information sources refer to the same object
in the world (e.g., the same person appearing in two different information sources). Briefly, our
implementation tries first to find unique identifiers for each constant (e.g., social security number
of a person). When it cannot find such identifiers it uses heuristic correspondence functions as in
the Remote-Exchange system [FFHM94].

1.1 Related Work

The fundamental difference between our work and other work that attempts to provide access
to collections of information sources is our focus on describing declaratively the contents of an
information source (e.g., “used cars for sale priced over $20,000”) and its query capabilities. Given
a query, our algorithm uses the descriptions to generate plans to answer the query. Thus our
approach is source-centric rather than query-centric. Other projects (e.g., TSIMMIS [CGMH*94],
HERMES [SAB*195]) are query-centric: they choose a set of queries, and for each such query
they provide a procedure to answer the query using the available sources. Given a new query,
their algorithms answer it by trying to relate it to existing queries. Our approach has two main
advantages. First, we are not restricted by which queries can be answered by the system. Second,
it is easier to add or delete sources because we do not have to modify the query-specific procedures
to accomodate the changes. A more detailed discussion of related work appears in Section 6.

1.2 Paper Organization

This paper is organized as follows. Section 2 describes the data model underlying the Information
Manifold, and Section 3 formally describes the source descriptions and query plans. Section 4
presents our algorithm for pruning sources and generating query plans. In Section 5 we describe
the implemented Information Manifold system and present our experimental results. Section 6
discusses related work, while Section 7 contains concluding remarks.

www.manaraa.com

2 Data Model

We use the relational model, augmented with certain object-oriented features that are useful for
describing and reasoning about the contents of information sources. The data model includes:

e Relations of any arity.

e (lasses and a class hierarchy. There is a partial order < such that €' < D whenever class C
is a subclass of class D.

o A set of attributes associated with each class. A class also inherits attributes from its super-
classes. Attributes may be single-valued or multi-valued.

Relations contain tuples while classes contain objects. Each object has a unique identifier. The
attribute values of a relation or a class can be either atomic values (strings or integers) or object
identifiers. An object may belong to more than one class (even if the classes are not related via
<). It is possible to declare a pair of classes to be disjoint, meaning that no object can belong to
both classes.

In order to be able to treat relations and classes uniformly, we associate a unary relation with
each class and a binary relation with each attribute of a class. The contents of these relations are
as follows (we use the convention that the relation associated with a class has the same name as
the class, and similarly for attributes):

e For class C', (X) € C' whenever z is the identifier of an object o and C' is one of the classes
of o.

e For attribute A on class C', (X,Y) € A whenever (X) € C' and and 2.4 = y (y is called the
A-filler of).

For single-valued attributes we often use A(z) to denote the only value for which A(z,y) can
hold. In order that these relations fully capture the semantics of the class hierarchy, we also
enforce certain integrity constraints. These constraints take the form of inclusion dependencies and
functional dependencies. In particular:

e Whenever C' < D when C' and D are viewed as classes, the inclusion dependency C'C D
holds when C" and D are viewed as relations.

e Lor each auxiliary relation A(X,Y’) corresponding to a single-valued attribute A, we have the
functional dependency A : X — Y.

e For each pair of disjoint classes C' and D, C' N D = @ holds when C' and D are viewed as
relations.

Example 2.1 Table 1 shows some classes and their attributes. In this example, we have Car <
Automobile and Automobile < Product, among other such relationships. Since Automobile <
Product, Automobile inherits the attribute Model from Product. Classes NewCar and UsedCar
are declared to be disjoint, reflecting the fact that a car cannot be both new and used. However,
class CarForSale is disjoint with neither NewCar or UsedCar. Disjointness information can also
be inferred from the class hierarchy: UsedCar and Motorcycle are disjoint because UsedCar < Car
and. Caris disjoint from Motorcycle. O

www.manaraa.com

Class Subclass of | Attributes Disjoint from
Product Model Person
Automobile | Product Model, Year, Category Stereo
Motorcycle | Automobile | Model, Year Car

Car Automobile | Model, Year, Category Motorcycle
NewCar Car Model, Year, Category UsedCar
UsedCar Car Model, Year, Category NewCar
CarForSale | Car Model, Year, Category, Price, SellerContact

Table 1: A class hierarchy. The classes Person and Stereo are not shown.

2.1 The World View

In the Information Manifold, the user poses queries in terms of a world view which is a collection
of virtual relations and classes. Thus, the world view is like a schema. We use the term world view
instead of schema to emphasize the fact that no data is actually stored in the relations and classes
of the world view.? It serves as the schema against which the user poses queries (thereby freeing
the user from having to interact with each source schema individually), and it is used for describing
the contents of the information sources (as we explain in Section 3).

Example 2.2 The world view we use throughout this paper consists of the classes in Table 1 (all the
attributes of which are single-valued) and the relation ProductReview(Model, Year, Review). This
relation contains triples (M, Y, R) such that R is a review of a product of model M manufactured
in year Y (for example, a product review in the Consumer Reports). O

2.2 Queries

In this paper, a query is a conjunctive query over the set of relations in the world view (i.e., select-
project-join queries) We also allow the order relations <, >,<,> to appear in queries, and we
require the queries to be range-restricted.

Example 2.3 The following query asks for models, prices, and reviews of sportscars for sale that
were manufactured no earlier than 1992 (query) of Example 1.1):

q(m,p,r) <« CarForSale(c), Category(c,sportscar), Year(c,y),y > 1992,

Price(c, p), Model(c, m), ProductReview(m, y,r)
We use this font to denote constants and lowercase letters for variable names. O
Formally, a query is of the form:
QX) = Ri(Z1), -, Bn(Z), Cq

where:

*However.we.do not mean to imply that the world view is a schema for all domains.

www.manaraa.com

1. Ry,..., R, are relations in the world view.

2. Cg is a conjunction of order subgoals of the form ubv, where § € {<,>,<,>} and u,v €

3 Describing Information Sources

Queries are posed to the system in terms of the world view. However, the data to answer these
queries is actually stored in external information sources. Therefore, to answer a query, we need
descriptions that relate the contents of each information source to the classes, attributes and rela-
tions in the world view. Furthermore, since sources may not be able to answer arbitrary queries
about their contents we need to describe the capabilities of the information sources in order to
create plans that can actually be executed.

3.1 Contents of Information Sources

There are several desiderata for descriptions of the contents of information sources:

e Since the number of information sources is large and frequently changing, we should be
able to add new information sources without changing the world view each time we add an
information source, and without affecting the descriptions of other information sources.

e Since many sources contain closely related information, the descriptions should be able to
model fine-grained differences between their contents, so that the set of sources relevant to a
query can be determined as “tightly” as possible.

o We should be able to develop efficient algorithms to determine the set of sources relevant to
a query and to generate query plans that access these sources.

We model the contents of an information source as tuples in one or more relations, or objects
in one or more classes. Two challenges arise in precisely describing contents of sources in terms of
the world view:

1. When adding a new information source, it is often the case that the tuples in the source
do not correspond directly to tuples in any one relation of the world view. For example,
suppose our world view includes the relation Teaches(Course, Teacher, Hour, Room), but the
online course listing makes available only (Course, Teacher) pairs. We could introduce a new
relation corresponding to these pairs in the world view, but doing so means modifying the
world view. Furthermore, that would require having many relations in the world view and
expressing complex dependencies between them in order to capture the relationship between
contents of different sources. Our solution is to describe the online course listing as containing
tuples in the relation mcoyrse, Teacher (T€acChes).

2. Even when the objects or tuples in an information source may be thought of as belonging
directly to a relation or class in the world view, we may wish to specify certain additional

www.manaraa.com

Source 1: Used cars for sale.

Contents: Vi(c) C CarForSale(c), UsedCar(c)

Capabilities: ({Model(c), Category(c)}, {Model(c), Category(c), Year(c), Price(c), SellerContact(c)},
{Year(c), Price(c)}, 1,4)

Source 2: Luxury cars for sale. All cars in this database are priced above $20,000

Contents: V,(c¢) C CarForSale(c), Price(c,p), p > 20000

Capabilities: ({Model(c), Category(c)}, {Model(c), Category(c), Year(c), Price(c), SellerContact(c)},
{Price(c)},1,3)

Source 3: Vintage cars for sale (cars manufactured before 1950).

Contents: Vs(c) C CarForSale(c), Year(c,y), y < 1950

Capabilities: ({Model(c)}, {Model(c), Category(c), Year(c), Price(c), SellerContact(c)},
{Price(c)},1,2)

Source 4: Motorcycles for sale.
Contents: Vj(c) C Motorcycle(c)
Capabilities: ({Model(c)}, {Model(c), Year(c), Price(c), SellerContact(c) }, { Price(c)}, 1,2)

Source 5: Car reviews database. Contains reviews for cars manufactured after 1990.
Contents: Vs(m,y,r) C Car(c), Model(c, m), Year(c,y), ProductReview(m,y,r)
Capabilities: ({m,y},{m,y,7},{},2,2)

Figure 2: Source descriptions for the sources in Figure 1

constraints that these objects or tuples satisfy. For example, consider the vintage car infor-
mation source from Example 1.1. Even though each object in the source belongs to class
CarForSale, we would like to specify that all the cars in this source were manufactured before
1950; we saw how we could use this additional information to prune this source as irrelevant
to the query in Example 1.1.

The solution to both these problems is to specify the tuples (or objects) in an information
source in terms of a query over the relations in the world view. For example, we say that the online
course listing source discussed above contains tuples in the relation CourseList(Course, Teacher),
such that:

CourselList(course, teacher) C Teaches(course, teacher, hour, room)

We describe the vintage car source as containing tuples of relation CarForSale(c) such that:
VintageCar(c) C CarForSale(c), Year(c,y),y < 1950

More formally, each source is modeled as containing tuples of a relation (or several relations)
which we call source relations. The names of the source relations are disjoint from the names of the
world view relations. For each source relation, we specify a conjunctive query over the world view
that describes the conditions the tuples in the relation must satisfy. Note that the source need not
contain all the tuples that satisfy the query; for example, no database of cars for sale contains all
cars for sale. We emphasize this incompleteness by using the connective C to relate the head and
body of the description instead of the conventional < used in queries. Figure 2 shows the content
descriptionssecorrespondingstosthe informal descriptions in Figure 1.

www.manaraa.com

It should be emphasized that the features of our data model (the class hierarchy, disjointness
of classes and built-in predicates) and the fact that we describe contents as queries enables us to
describe very tightly the contents of the sources, and therefore to be able to prune the sources
relevant to a given query. Furthermore, adding sources does not affect the descriptions of other
information sources. In Section 4 we show that we can effectively use the descriptions to create
query plans. Finally, it should be noted that we do not claim that our data model integrates the
relational and object oriented data model. It simply provides a mechanism necessary to describe
sources using those data models, so that we can query them.

3.2 Capabilities of Information Sources

The content description tells us what is in an information source, but it does not tell us which
queries the source can answer about its contents. A conventional relational database can answer
any relational query over its relations. However, information sources in general may permit only
a subset of all relational queries over their relations. For example, we saw that the cars for sale
database in Example 1.1 answers the query: Given a price range and a category of car, what cars of
this category are available for sale within this price range? However, the source will not answer the
query: List all cars in the database. Furthermore, when a source contains instances of a class, it may
be able to answer queries only about a subset of the attributes of the class.

When generating query plans it is important to adhere to the capabilities of the information
sources and exploit them as much as possible. In Example 1.1, the query plan involving sources 2
and 5 was different from the plan involving sources 1 and 5 because source 1 was able to perform
the selection on the year of the car.

We describe the capabilities of an information source using capability records. Capability records
are meant to capture the two kinds of capabilities encountered most often in practice, which are (1)
the ability of sources to apply a (perhaps limited) number of selections, and the limited forms of
variable bindings that an information source can accept (also called query templates in [RSU95]).
The capability records specify which inputs can be given to the source, the minimum and maximum
number of inputs allowed, the possible outputs of the source and the selections the source can apply.
Sources with capabilities to perform arbitrary relational operators are considered in [LRU96].

Formally, a capability record specifies which parameters can be given to the source. A parameter
of a source relation R(X) is either a variable z € X or A(z) where A is an attribute name
and 2 € X. With every source relation we associate exactly one capability record of the form
(Sins Souty Sset, min, max), where S;,, Soue and S, are sets of parameters of R, and min and maz
are integers. Every variable in X must appear in either S;, or Sous (either the variable itself or an
attribute on it). The meaning of the capability description is the following. In order to obtain a
tuple of R from the information source, the information source must be given a binding for at least
min elements of .5;,. If we provide the values a,...,a, for the elements «y, ..., a, in 9;,, we will
obtain all the tuples in the information source that satisfy oy = aq, ..., a, = a,.

The elements in S,,; are the parameters that can be returned from the information source. The
elements of S, which must be a subset of S;, U S,,:, are parameters on which the source can
apply selections of the form aopec, where ¢ is a constant and op € {<,<,#,=}. Given a source

relation R, providing the information source with the values aq, ..., a, for the elements aq, ..., a,
in .Sy, asking for the values of 31,..., 3;in S,y:, and passing the selections +q, ..., v to the source
9

www.manaraa.com

will produce the tuples (Y1,...,Y;) that satisfy the following conjunction:
R/(Yh...,)/l) . —R(Xh...,Xm), Ol = A1y ooy Oy = an7ﬁ1 IYh ...7ﬁ[IY},’yh ceey Yo

Given a content description of the form R C Qi and input/output specifications as described
above, the following is called the augmented description of R w.r.t. the input/output specifications:

R/(YI7---7)/I)QQR7051:Q17 .-.7Oén2an7ﬁ1:Y17 "'7ﬁl:)/l7717 ceey Yk

In our query-planning algorithm we use a specific canonical augmented description of R in which
the inputs include all of 5;,, the outputs include all of S,,; and there are no selections.

Example 3.1 The vintage-car information source can handle any query on relation VintageCar(c)
that bind at least one of model and category and can also handle range selections on year and price.
It can return the model, year, price, category and seller contact information of the car. We can
describe it using the capability record:

({Model(c), Category(c) }, { Model(c), Category(c), Year(c), Price(c), SellerContact(c)},
{Year(c), Price(c)},1,4)

Figure 2 lists the capability records describing the information sources in our example. O

3.3 Query Plans

A query plan is a sequence of accesses to information sources interspersed with local processing
operations. A query plan must combine information from various sources in a way that guarantees
semantically correct answers, and must adhere to the capabilities of the information sources. We
explain these notions below. Given a query @ of the form

QX) « Ri(Z1), ..., R.(Z)), Cg

a plan to answer it consists of a set of conjunctive plans. Conjunctive plans are like conjunctive
queries except that we also specify the inputs and outputs to every subgoal. Formally, a conjunctive
plan is of the form:

P:Q(X) +
1(U1) (ing, outy, sely) , ...,

m(Um) (ing,, out,,, sely,) ,

Cp.

=K

Each of the Vi’s is a source relation. The sets in; and out; are parameters on U;, and sel; is set
of selections applied to the parameters of U;. An element of in; is of the form p; : ps, where p; is
one of the parameters that can be passed to the information source, and p» is is a parameter whose
value either appears explicitly in the query or is in out; U...Uout;_1. Cp is a set of selections that
are applied locally by the query executor. A plan P is executable if the capabilities of the sources
are satisfied, i.e., for every i, 1 < ¢ < m, (in;, out;, sel;) is consistent with the capability record of
the source V;, and

e in; C @y Uout; U...Uout;_y, where @;, is the set of parameters available explicitly in the
query.

10

www.manaraa.com

To define the semantic correctness of a conjunctive plan, we consider the augmented content
descriptions of the information sources. Recall that given the input and output specifications, each
information source is modeled as containing a subset of the tuples of a relation V; defined by a
conjunctive query S;. Therefore, we can consider the expansion of the plan P as the query P’
obtained by expanding the definitions of the subgoals V;. Formally P’ is obtained by replacing the
subgoal V;(U,) by the body of the query S; after unifying the head variables of @; with U;. The
conjunctive plan P is said to be semantically correct if P’ is contained in @), i.e., for any extension
of the world view relations that satisfies the integrity constraints, the answer to P’ would be a
subset of the answer to ().

Example 3.2 Consider our query asking for sports cars manufactured in 1992 or later:

q(m,p,r) <« CarForSale(c), Category(c,sportscar), Year(c,y),y > 1992,
Price(c, p), Model(c, m), ProductReview(m, y,r)

The following is a semantically correct plan for the query:

P2 Q(m,p,r) « Vi(e) ({Category(c) : sportscar},
{Price(c), Model(c)},{Year(c) > 1992 , Category(c) = sportscar}),
Va(m,y,r) ({m: Model(c),y : Year(c)}, {r},{}).

To see why, consider the expansion query P| of P, obtained by unfolding the augmented descriptions

of Vi and V5:

Pl : Q(m,p,r) + CarForSale(c), UsedCar(c), Category(c,t), t = sportscar, Model(c, m),
Year(c,y), Price(c, p), ProductReview(m,y,r),y > 1992

The query P| is contained in). To see why, suppose ¢ is a tuple generated by P[; then ¢ satisfies
all the conjuncts in the body of P/. The body of P contains all the conjuncts in the body of the
query @) (it also contains additional conjuncts), and so ¢ must also satisfy the query Q. O

3.4 Answers to a query

In the definition of a semantically correct plan we required only that P’ be contained in) and not
equivalent to (). There are two reasons for this. First, even if P’ were equivalent to (), the answer
obtained by executing the conjunctive plan P may not be complete because the sources may be
incomplete. Second, conjunctive plans that produce only a subset of the answer are also useful. For
example, if we are searching for sports cars manufactured after 1992, and we have an information
source with cars manufactured after 1994, we would still want to query it.

To conclude this section, we define the set of answers to the query () as all the tuples that
can be obtained by some ezxecutable and semantically correct conjunctive plan for (). In the next
section we describe our algorithm for computing query plans.

3.5 Interface Programs

Describing source query capabilities in terms of capability records provides a clean separation
between query planning and the actual details of interacting with each information source. These
detailsraresencodedsinminterface programs. Logically, there is one interface program that accepts

11

www.manaraa.com

any query template available at the source and returns the appropriate answer. The interface
program accepts the bound parameters to a query corresponding to the template, interacts with
the information source (which typically involves going over the network), and produces a relation
corresponding to the free parameters in the query template. Interface programs also handle details
such as contacting replicas if an information source is unavailable. Some of the details are given in
Section 5.

4 Algorithms for Answering Queries

In this section, we present the algorithm used in the Information Manifold to generate semantically
correct and executable query plans for a given query). Our algorithm proceeds in two stages. In
the first stage, we generate conjunctive plans that are semantically correct. In the second stage we
try to order the conjuncts of the plan to ensure that they are executable, i.e., that they satisfy the
capability requirements of the query.

4.1 Generating Semantically Correct Query Plans

As explained in the previous section, a semantically correct plan guarantees that the answers
produced will actually be answers to the query. In our discussion about semantically correct plans
we ignore the input/output specifications of each subgoal in the plan (which will be computed in
Section 4.2). Thus, in our discussion plans can be viewed as conjunctive queries.® As implied by
the previous section, finding a semantically correct query plan amounts to finding a conjunctive
query (' that uses only the source relations and is contained in the given query (). Therefore, our
problem is closely related to the problem of answering queries using views [LMSS95, RSU95, YL&7,
CKPS95, Qia95], where the source relations play the role of the views.

The problem of answering queries using views is the following. Given a query) using the
relations Fy, ..., F,, and a set of view definitions Vi, ..., V,,, over the same relations, find a query
Q' that uses Vi,...,V,, such that @ is equivalent to @’. There are two differences between our
problem and previous treatments of the view rewriting problem. First, we require the rewriting
only to contained in the query (but be a satisfiable query!), and not necessarily equivalent to the
query. Second, we want to find all the rewritings of the query using the source relations, two
equivalent plans (that use different information sources) will not necessarily produce the same set
of answers.

The problem of answering queries using views is known to be NP-complete in [LMSS95], even
for conjunctive queries without constraints. The algorithm suggested there is not very practical
since it requires guessing a rewriting @), and then checking whether it is a semantically correct
solution. The main source of complexity is the fact that there are an exponential number of
candidate rewritings. This is especially significant in our context because that algorithm would be
exponential in the number of information sources. We now describe an algorithm that exploits the
characteristics of the domain to drastically reduce the number of candidate rewritings considered.

Our algorithm has two steps. In the first, we compute a bucket for each subgoal in the query,
each containing the information sources from which tuples of that subgoal can be obtained. In
the second step, we consider all the possible combinations of information sources, one from each

FWe use the canonical augmented description of each source for testing correctness.

12

www.manaraa.com

Algorithm CreateBuckets()V,Q)
Inputs: V is a set of content descriptions, and () is a conjunctive query of the form

Q:Q(X) + Ri(Xy), ..., Ru(X1), Co.

Set Bucket; to 0 for 1 < i < m.
Fori=1,...,ndo:
For each V €V
Let V' be of the form:
V(Y) CSi(V1), -, Su(Ya), Cy
Forj=1,...,ndo
If R; =5, or R; and S; are nondisjoint classes
Let 7 be the mapping defined on the variables of V' as follows:
If y is the j’th variable in Y; and y € Y
then ¥ (y) = z;, where z; is the j’th variable in X.
else 1 (y) is a new variable that does not appear in @) or V.
Let @' be the 0-ary query:
Q +— Ri(Xy), ..., Rn(X,), Co, S1(v(Y1)), ..., Su(¥(Y,)), ¥(Cy)
If Satisfiable(()) then add (V) to Bucket;.
End.

Figure 3: Algorithm to create the relevant buckets for each query subgoal. The procedure
Satisfiable(Q)') tests whether a query (' is satisfiable. It tests that the conjunction of built-in
atoms is satisfiable, and that there are no two subgoals C'(z) and D(z) where C' and D are dis-
joint classes. We assume that the source descriptions are given to the algorithm in their canonical
augmented form.

bucket, and check whether it’s a semantically correct plan. As we see in Section 5.2, the first step,
whose running-time is polynomial in the number of sources, considerably reduces the number of
possibilities considered in the second step. The details of the first step are given in Figure 3.

Example 4.1 Consider our query asking for sports cars manufactured no sooner than 1992:

q(my1,p1,71) CarForSale(cy), Category(cy,sportscar), Year(cy,y1), y > 1992,
Price(cy,p1), Model(cy, my), ProductReview(my, y1,71)
and consider what happens when algorithm CreateBuckets looks at Source 1 and the first subgoal

of our query CarForSale(cy). The canonical augmentation of the content description of Source 1
is:

Vi(m,t,y,p,s) C CarForSale(c), UsedCar(c), Model(c, m), Category(c,t), Year(c,y),
Price(c, p), SellerContact(c, s)

therefore, the algorithm will find the mapping ¢ — ¢; and check whether the following conjunction
is satisfiable:?

“Note that some variables (ergmpyn and y) get equated because of the single-valued attributes.

13

www.manaraa.com

CarForSale(cy), Category(cy, sportscar), Year(cy,y1), y1 > 1992,
Price(cy,p1), Model(cy, my), ProductReview(my, y1,71), UsedCar(cy), SellerContact(cy, s)

Since the classes CarForSale and UsedCar are not disjoint, the conjunction is satisfiable and
Source 1 is added to bucket;. In a similar fashion, Source 2 is added to buckety. Source 3 does not
get added because (y < 1950, y > 1992) is not satisfiable, and Source 4 does not get added because
CarForSale and Motorcycle are disjoint classes. Source 5 is the only source in the bucket of the
subgoal ProductReview(my,yi,r1). O

In the second step of the algorithm we consider every conjunctive query @’ of the form
Q¢ (X) = Vi(Yy), ..., V.(Y,), C,

where V; is the head of a description in the bucket of the ¢th subgoal of). Any minimal subset of
@' that is either

e contained in (), or
e can be made to be contained in) by adding subgoals of built-in predicates

is added to the list of semantically correct solutions. To test containment, we can use an extension
of a containment algorithm for conjunctive queries with built-in predicates [LS93] that considers the
the functional dependencies (as in [CM77]) and the inclusion dependencies. Although containment
is known to be intractable in general, its intractability is in the size of the query (which tends to be
small), and only occurs when queries have multiple occurrences of the same relations. Consequently,
the complexity of containment is not a problem in practice.

Example 4.2 As shown in Example 3.2 the query resulting from combining sources 1 and 5 is
contained in the original query, and is therefore a semantically correct plan. Note that as a first
step in the containment check we propagate the functional dependencies enforced by the single-
valued attributes, and then we remove multiple occurrences of identical conjuncts. O

Our algorithm considers rewritings that have at most one source from each bucket. Conse-
quently, we consider only rewritings that have at most the number of subgoals in the query (not
counting the built-in subgoals). The result of [LMSS95] implies that when functional dependencies
are not present and built-in predicates do not appear in the content descriptions, it suffices to
consider only rewritings of this length. This means that although they may be longer rewritings
that produce semantically correct conjunctive plans, any answer that would be obtained from a
longer rewriting would also be produced by a rewriting whose length is bounded by the size of the
query. However, as shown in [LMSS95, RSU95], in theory, the bound on the size of the rewriting
does not hold when either functional dependencies, built-in subgoals or binding patterns occur. In
such cases, we would need to take more than one source from each bucket in order to guarantee
that we find all solutions. It should be noticed that in practice we have not found that we missed
solutions because of bounding the length of rewritings we consider.

14

www.manaraa.com

4.2 Finding an Executable Ordering

In the second step of creating query plans we consider the semantically correct plans and try to
order the subgoals in such a way that the plan will be executable, i.e., will adhere to the capability
requirements of the information sources. Figure 4 describes an algorithm that given a semantically
correct plan, finds an ordering on its subgoals that is executable, if such an ordering exists. The
algorithm proceeds by maintaining a list of available parameters, and at every point adds to the
ordering any subgoal whose input requirements are satisfied. Finally, the algorithm pushes as many
selections as possible to the sources.

procedure create-executable-plan(Q’)

/+ Input: @’ is a semantically correct conjunctive plan whose non-interpreted subgoals are Uy, ..., U,. %/
The capability record of the information source of U; is (in;, out;, sel;, min;, maw;).
We assume all bindings in @’ are given explicitly using the = relation as a conjunct.

Output: an executable query plan P’, which is an ordering V1,...,V, of U, ..., U,
and triplets (V! , V7., VI) specifying the inputs and outputs of the conjuncts.

in? Youtr Vsel

Cp: is the set of selections that will be applied locally. */

QueryBindings = The set of variables in @)’ bound by values in the query.
Qou: = The head variables of Q'.
QuerySelections = The set of variables in @’ for which the query contains a selection.
BindAvaily = QueryBindings.
fori=1,...,n
The 7'th subgoal in the ordering, V;, is any subgoal U; of (' that was not chosen earlier and
at least min; of the parameters in ¢n; are in BindAvail;_;.
if there is no such subgoal, return plan not executable, else
BindAvail; = BindAvail;_1 U out;.
Vi = A minimal set of parameters in BindAvail;_; that satisfied the input requirement of U;.

Voiut = All the parameters in out;.

end for
if Qout € BindAvail, return plan not executable.
fori=1,...n

.+ that is not needed as an input to a subsequent subgoal or for ()uyt.
Add to as many parameters as possible from QuerySelections U BindAvail;_; to Vi,

and selections using these parameters to V}, such that the cardinality of Vi, UV}, does

not exceed the input capacity of its source.
C'p: includes all the built-in atoms in @’ that are not in one of the VSZ

€
end create-executable-plan.

Remove any element from V!

»
;8.

Figure 4: An algorithm for computing an executable ordering of a semantically correct plan. We
assume that any pair of variables that are forced to be equal because of the functional dependencies
have already been equated in the input.

Example 4.3 Consider the semantically correct plan for answering our sportscar query:

Py Qgpsi)ei—aVale)sValimng y,), Model(c, m), Year(c,y), Category(c, sportscar), y > 1992.

15

www.manaraa.com

The set of available bindings in the query are {Category(c)}. Therefore, the input require-
ments of Vj(c) are satisfied and so it is put first. The outputs of Vi(c) are {Model(c), Price(c),
Year(c), SellerContact(c)}, therefore BindAvaily = {Category(c), Model(c), Price(c), Year(c),
SellerContact(c)}, and so the input requirements of Va(m,y,r) are satisfied. Since the second
information source provides the review, the ordering is executable. Finally, we add y > 1992 to
the selections of the first source. We remove SellerContact(c) from the outputs of the first subgoal
because it is not needed anywhere in the query. O

The following theorem shows that our algorithm will find an ordering of a plan whenever an
executable ordering exists, and will do so in polynomial time. A proof sketch is given in the
appendix.

Theorem 4.1: Let Q' be a semantically correct plan. If there is an ordering of the subgoals of
Q' that results in an executable plan, then procedure create-executable-plan will find it. The
running time of the procedure is polynomial in the size of ()'. O

Algorithm create-executable-plan is a generalization of an algorithm by Morris [Mor88] for
ordering subgoals in the presence of binding constraints. The key difference is that our capability
records encode a set of possible binding patterns for each subgoal, and we find an ordering that
chooses one pattern from every such set. Furthermore, our binding patterns involve not only
variables occuring in the query, but also attributes on them, and also the possibility of pushing
selections on parameters.

Our descriptions allow only one capability record for every source relation. This restriction
essentially means that the parameters that can be obtained from the source do not depend on
which parameters were chosen in order to satisfy its input requirements (note that we are referring
to the names of the parameters, not their values!). In practice, we have found this to be sufficient
to describe the sources we encountered. Conceivably, there may be situations in which it will not
suffice, and the output set depends on which set of input parameters we used. The following theorem
shows that in such a case, the problem of determining whether there exists an executable ordering
for a plan is intractable, and therefore the choice we made also has important computational
advantages. The proof of the theorem is given in the appendix.

Theorem 4.2: If every source relation in the content descriptions of information sources could
have more than one capability record of the form (Sin, Sout, Ssel, min, max), then the problem of
determining whether a semantically correct plan can have an executable ordering is NP-complete.
O

5 Implementation

5.1 The Information Manifold System

The Information Manifold system uses the techniques described in the previous sections to provide
a uniform query interface to structured information sources on the World Wide Web and internal
sources at AT&T Bell Laboratories. Figure 5 shows the architecture of the Information Manifold
system.

16

www.manaraa.com

Sour ce descriptions Plan Relevance reasoning
1
o Logical planner
Contents Generator e P
Capabilties Execution planner

User interface
(WWW-based)

Answers

j Execution plan

Execution engine

Select, project, join, union...

Interface program

Interface program

Interface program

I nterface program

INTERNET

|

|

|

|

Structured

Files

WWW Form
interface

Relational

Database

Object-oriented

database

------------ e s i R

Figure 5: Architecture of the Information Manifold

Users interact with the Information Manifold through a web based interface. The interface
enables users to browse the categories of information available (i.e., the world view), and to see
which information sources are available. Users can formulate queries either using templates that are
available for classes in the world-view, or by combining such templates into an arbitrary conjunctive
query.

When a query is posed, the system uses the descriptions of information sources, as explained in
the previous section, in order to decide which sources are relevant, and to compute the various ways
in which answers to the query can be found (i.e., the executable solutions). An important aspect of
the system is that it provides a stream of answers to the user, and therefore tries to minimize the
time taken to begin and sustain the stream, as opposed to minimizing the time taken to provide all
the answers to the query. Minimizing the time to the early tuples is important because the user is
likely to find a satisfactory answer before all answers are exhausted. The plan executor also tries
to access information sources in parallel, whenever the plan allows for parallelism.

The system currently provides access to over 100 information sources in various domains, in-
cluding name servers, publication databases, market databases and entertainment sources (e.g.,
movie and video databases, CD stores). Our method of describing information sources has proved
to be useful in practice by enabling us to quickly and accurately model a large number of sources,
while leaving the world-view relatively stable. We have developed a set of tools which enable us
to speed up the process of generating interface programs to information sources on the WWW. In
particular, many sources on the WWW have a form-based interface. We have developed a tool
in which we simply determine the correspondence between the variables used in the form and the

17

www.manaraa.com

Query | Number of | Max. bucket Plans Plans Time per | Total time

sources size enumerated | generated | plan (sec.) (sec.)

20 1 7 1 0.55 0.55

40 1 7 1 0.56 0.56

1 60 2 26 2 0.85 1.70
80 2 26 2 0.85 1.70

100 2 26 2 0.85 1.70

20 2 7 1 0.57 0.57

40 3 11 2 0.48 0.96

2 60 5 35 6 0.49 2.95
80 6 44 8 0.40 3.20

100 7 72 8 0.75 6.00

20 2 8 2 0.28 0.56

40 2 8 2 0.28 0.56

3 60 2 8 2 0.28 0.56
80 6 49 6 0.22 1.32

100 10 120 10 0.22 2.20

Table 2: Query planning statistics for queries 1, 2, and 3 as the number of available information
sources is varied between 20 and 100.

world view, and then specify a grammar describing the format of the answers obtained from the
source, and the bulk of the interface program is generated automatically. Several of the interface
programs use an outerjoin-based technique [RU96] to convert hierarchically structured documents
into relations.

5.2 Experimental Results

In order to experimentally evaluate our algorithms, we selected a set of queries and studied how
various parameters varied as we increased the number of information sources available to the system.
Here we illustrate our results using three representative queries:

o Query 1: Find titles and years of movies featuring Tom Hanks.
o Query 2: Find titles and reviews of movies featuring Tom Hanks.

e Query 3: Find telephone number(s) for Alaska Airlines.

For each query, we varied the number of information sources available to the system from 20
to 100 and measured various parameters. The results are shown in Table 2. All our experiments
were run on a SGI Challenge computer with a clock speed of 150MHz. Mazimum bucket size
is the number of sources in the largest bucket created using Algorithm CreateBuckets. Plans
enumerated is the number of candidate plans enumerated in the second stage of the query planning
algorithm, while plans generated is the total number of semantically correct and executable query
plans actually generated for a given query. Table 2 also gives the total time taken to generate all
query plans and the time per plan.

18

www.manaraa.com

6 T T T T T T T y
Query 1 <

Query 2 —-
51 Query 3 A7--

100

Figure 6: Total query planning time in seconds versus number of information sources.

We note that the number of information sources relevant to a query generally increases with
the total number of sources available. However, Algorithm CreateBuckets is extremely effective
in pruning away irrelevant sources. The effectiveness of the pruning is measured in terms of the
reduction in the number of candidate plans that are enumerated when creating semantically correct
plans. If there were no pruning (as suggested by the nondeterministic algorithm in [LMSS95]), we
would have to enumerate O(n|Q|) plans for query @), where n is the total number of information
sources and |@| is the number of subgoals in). For example, with 100 sources, we would have
to enumerate more than 1 million plans for Query 1. However, the number of plans we actually
enumerate is only 26 (a function of the product of the bucket sizes). This pruning is extremely im-
portant to ensure the scalability of our system, since we have to do an expensive query containment
check for each enumerated plan.

Observe also that although Query 1 and Query 2 both ask about movies, the number of sources
relevant to Query 2 is more than the number of sources relevant to Query 1 (7 versus 2 with 100
sources, for example). This difference is due to our ability to model fine-grained distinctions among
movie sources, which enables us to prune away certain sources for Query 1 that are relevant to
Query 2.

Figure 6 plots the total time to generate all query plans for each query against the number of
information sources available to the system. It is seen that the overall time generally increases with
the number of information sources, but not exponentially. Due to the effective pruning, the time
for plan generation is more a function of the number of relevant information sources than of total
number of information sources.

The total time for query planning is not a very good indicator of system response time. In the
Information Manifold, each query plan is executed a soon as it is generated, in parallel with further
planning and executing other plans. Thus, a better measure of response time is the average time

19

www.manaraa.com

0]]]]]]]
20 30 40 50 60 70 80 90 100

Figure 7: Average time per plan in seconds versus number of information sources.

to generate one query plan. We plot the average time per plan against the number of information
sources in Figure 7. In contrast to the total query planning time, we observe that the average
plan time does not always increase with the number of information sources, nor does it increase as
rapidly. This effect is due to the fact that increasing the number of sources available generally also
increases the number of possible query plans. Finally, we observe that the average time per plan
is within a tight range of less than 1 second for the queries we study, even when the number of
information sources is large. This time is to be contrasted with the time taken to execute a query
plan, which typically involves going over a network. For example, executing a query plan for Query
2, which involves querying multiple sources, parsing their answers, and computing a join, takes as
much as 30 seconds with typical wide area network speeds.

6 Related Work

Our approach to integrating multiple information sources can be seen as treating the sources as a
multidatabase or as a federated database (e.g., [ASDT91, FHM94, HBP94, LMR90]). In fact, the
content descriptions of information sources can be viewed as a generalization of exported schemas
in multidatabases. However, in multidatabases the correspondence between the contents of the
individual databases and the global schema is more direct. As one example, in the Pegasus sys-
tem [ASDT91] every external database is modeled as a class in the class hierarchy, which is disjoint
from other classes. It is then possible to define superclasses that represent unions of databases.
In the Information Manifold the contents of an information source can be defined as an arbitrary
conjunctive query on classes and relations in the world-view. Therefore we do not have to create a
class for every source, and we are able to make more fine-grained distinctions between the contents
of sourcessTFhissdifferenceshassproven very important in practice in order to quickly add informa-

20

www.manaraa.com

tion sources. In Pegasus, determining the set of databases to access in order to answer a query is
simple, because it is immediate from the query. One of the key difficulties in the Information Man-
ifold is determining which information sources are relevant to a query. Finally, source capabilities
are not considered in the multidatabase literature. The upshot of these differences is that in the
Information Manifold the user can more easily specify what he or she wants, rather than having
to formulate a query in a way that would guarantee that all the relevant information sources are
accessed. On the other hand, it should be noted that since our goal is only to provide a query
interface to the information sources, we are not concerned with issues of consistency and updating
the information sources as in multidatabases.

In [LSK95] a language for describing information sources that was less expressive than the one
we describe here was proposed. The language did not consider the capability descriptions, and
the algorithms described for finding relevant information sources did not deal with the case where
source descriptions are given as queries on the world-view relations. Consequently, only a limited
range of information sources could be incorporated. Practical algorithms and evaluation were also
not discussed there.

Several systems (e.g., TSIMMIS [CGMH*94, PGGMU95|, SIMS [ACHK94], HERMES [SABT95],
CARNOT [WACT93], DISCO [FRV95], Nomenclator [Ord93, OM93]) for integrating multiple in-
formation sources are being built on the notion of a mediator [Wie92]. The key aspect distinguishing
Information Manifold from the other systems is its generality, i.e., that it provides a source indepen-
dent, query independent mediator. Instead of being tailored to specific information sources and /or
specific queries on these information sources, the input to Information Manifold is a set of descrip-
tions of the contents and capabilities of the sources. Given a query, the Information Manifold will
consider the descriptions and the query, and will create a plan for answering the query using the
sources. Consequently, we do not have to build a new mediator for different queries or information
sources. For example, the Nomenclator system incorporates multiple CCSO, X.500 and relational
name servers. Source descriptions are given as equality selections on a single relation, and queries
can only reference one relation.

The SIMS system [ACHK94] also describes information sources independently of the queries
that are subsequently asked on them. The descriptions in the Information Manifold are richer than
those in SIMS because they allow relations of arbitrary arity, and in particular allow us to express
the fact that an information source contains a conjunctive view over world-view relations (either
classes, roles or relations of higher arity). SIMS does not consider capability descriptions of the
sources. SIMS, as well as the Internet Softbot [EW94] use Artificial Intelligence planning techniques
for determining the relevant information sources and creating a query plan. These approaches
do not provide the guarantees of ours, that is that we find all and only the relevant sources.
Furthermore, it is not clear how their techniques will scale up to large numbers of information
sources. In contrast, most of the algorithms we use are efficient, and the sources of complexity
(e.g., containment checks) are well understood and are limited in practice. The advantage of
general purpose planning techniques is the flexibility in dealing with unexpected problems during
query evaluation [Kno95].

Finally, there are several indexing systems for finding information on the World Wide Web
(e.g., Harvest [BDMS94], Gloss [GGMT94], Yahoo, Lycos). However, all these systems are based on
keyword searches on contents or annotations of documents, and are only able to retrieve documents
that match these keywords. They cannot answer semantically meaningful queries that require
considering the contents of the sources. The W3QS [KS95] is a system for specifying high-level

21

www.manaraa.com

queries over unstructured information sources. This system enables the user to specify in the query
patterns of nodes on the web and properties of such nodes (that can be checked using existing Unix
utilities). W3QS is a very useful tool that enables a lot of otherwise manually done search to be
done by a search engine, but it does not make use of contents of structured sources, and combine
information from multiple sources.

7 Conclusions and Future Work

We described the query planning algorithms used in Information Manifold, a novel system that
provides a uniform query interface to distributed structured information sources. The Information
Manifold frees the user from having to interact with each information source separately, and to
combine information from multiple sources. The techniques underlying the Information Manifold
are applicable to sources on the WWW as well as other collections of information sources such
as company-wide databases. The key aspect of our system is a mechanism for describing the
contents and capabilities of the available information sources. This enables expressing fine-grained
distinctions between the contents of different information sources, thereby enabling us to prune the
sources that are irrelevant to a given query. A novel aspect of our system is that it describes the
capabilities of information sources in addition to their contents, which is crucial in order to interact
with remote sources. Our contributions include practical algorithms for deciding which information
sources are relevant to a query, and how to combine them in a way that adheres to the capabilities
of the sources and exploits them when possible. Our architecture and algorithms have been useful
in practice, allowing us to describe many existing information encountered. The end result is the
first system that provides a database-like interface to over 100 structured information sources on
the WWW.

The world-view with which the user interacts is designed with respect to the set of information
sources to which we expect to provide access. An important issue is designing tools to obtain
descriptions of information sources easily. In [LO95] we describe one such fielded tool designed to
obtain descriptions of name server sources. The tool is based on asking the administrators of the
name servers to annotate example entries from their databases so that we can infer the content
descriptions of the source from the annotations.

There are several important areas of research we are currently pursuing. First, we are consider-
ing how to extend our source descriptions so that we will be able to infer that a source is relevant
to a query with some degree of likelihood. For example, if we are searching for papers on database
systems, and have access to a repository of papers on operating systems, we cannot completely ig-
nore the repository, because we cannot state that these two fields are disjoint. However, we would
like to access this repository only after we have accessed all other repositories that are closer to
database systems. The second extension we are considering is extending our modeling mechanism
and algorithms to be able to deal partially with unstructured information sources.

Acknowledgments

The authors thank Marie-Christine Rousset, Avi Silberschatz, Anthony Tomasic and Jeff Ullman
for comments on earlier versions of this paper.

22

www.manaraa.com

Appendix

Proof Sketch of Theorem 4.1: The main observation underlying the proof is that if there is
an ordering of the subgoals of @', and a subgoal V; appears in the i’th position, then its input
requirements will still be satisfied even if other subgoals are pushed in front of it. This property is
because the set of available parameters increases monotonically.

Given this observation, suppose there is an executable ordering Vi, ..., V, of the subgoals of
@'. The subgoal V| will be added at some point to the ordering by the algorithm because its
input requirements are already satisfied by the explicit bindings in the query. Inductively, if the
subgoals Vi, ...,V;_1 are added at some point to the ordering, then the algorithm will ultimately
add V; to the ordering, since its input requirements are satisfied after Vi,..., V;_; have been added.
Therefore, since all subgoals will be added at some point, some ordering will be found. O

Proof of Theorem 4.2: The problem is in NP because we can simply guess an ordering, and
check whether it satisfies the requirements of the information sources in polynomial time.

We show the NP-hardness by reducing the satisfiability problem of 3CNFE formulas to our
problem. Let A be a set of 3CNF formulas, with the propositional variables py, ..., p, and clauses
Cly...,Cm. We construct a semantically correct plan with n 4+ m subgoals. Each subgoal uses a
different information source, and all subgoals have exactly one variable, X. For each of the first
n subgoals, we have the following capability record: (0, {p}(X)},0,0,0), (0, {p?(X)},0,0,0) that
is, there are no requirements on the input or selection parameters, but there are two possible
outputs, either the p} or p? parameter. Intuitively, the choice of output determines the truth value
of the proposition p;. The next m subgoals are one for each clause. Suppose the ¢’th clause is
{L1, La, L3}, where each L; is a literal. The (n+14)’th subgoal has one capability record. The input
set S;, contains three elements: for 1 < j < 3 it contains p}(X) if L; = p; and p?(X) if L; = —p;.
The minimum number of inputs is 1 and the maximal number is 3. There are no output or selection
parameters.

Clearly, if A is satisfiable, there is a way to satisfy the capability requirements in the query.
We choose the capabilities of the first n subgoals to produce exactly the satisfying assignment to
the variables of A (i.e., p}(X) if p; is assigned True, and p?(X) otherwise). The next m subgoals
are satisfied, since each of the clauses in A are satisfied by the truth assignment. Similarly, if
there is a way to satisfy the requirements of the information sources then we can build a satisfying
assignment in a straightforward fashion. Finally, our reduction is polynomial because the query we
produced is polynomial in the size of A. O

References

[ACHK94] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving
and integrating data from multiple information sources. International Journal on
Intelligent and Cooperative Information Systems, 1994.

[ACM93] Serge Abiteboul, Sophie Cluet, and Tova Milo. Querying and updating the file. In
Proceedings of the 19th VLDB Conference, Dublin, Ireland, 1993.

23

www.manaraa.com

[ASD'91] Rafi Ahmed, Phillippe De Smedt, Weimin Du, William Kent, Mohammad A.
Ketabchi, Witold A. Litwin, Abbas Rafii, and Ming-Chien Shan. The Pegasus het-
erogeneous multidatabase system. IEFE Computer, pages 19-26, December 1991.

[BDMS94] C. Mic Bowman, Peter B. Danzig, Udi Manber, and Michael F. Schwartz. Scalable
internet resource discovery: Research problems and approaches. CACM, 37(8):98-107,
August 1994.

[CGMH™94] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis
Papakonstantinou, Jeffrey Ullman, and Jennifer Widom. The TSIMMIS project: In-
tegration of heterogenous information sources. In proceedings of IPSJ, Tokyo, Japan,
October 1994.

[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim. Op-
timizing queries with materialized views. In Proceedings of International Conference
on Data Engineering, 1995.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in
relational databases. In Proceedings of the Ninth Annual ACM Symposium on Theory
of Computing, pages 77-90, 1977.

[EW94] Oren Etzioni and Dan Weld. A softbot-based interface to the internet. CACM,
37(7):72-76, 1994.

[FHM94] Douglas Fang, Joachim Hammer, and Dennis McLeod. The identification and resolu-
tion of semantic heterogeneity in multidatabase systems. In Multidatabase Systems:
An Advanced Solution for Global Information Sharing, pages 52-60. IEEE Computer
Society Press, Los Alamitos, California, 1994.

[FRV95] Daniela Florescu, Louiqa Rashid, and Patrick Valduriez. Using heterogeneous equiv-
alences for query rewriting in multidatabase systems. In COOPILS ’95, 1995.

[GGMT94] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic. The effectiveness of
gloss for the text database discovery problem. In Proceedings of SIGMOD-94, pages
126-137, 1994.

[HBP94] A. R. Hurson, M. W. Bright, and S. H. Pakzad, editors. Multidatabase Systems: An
Advanced Solution for Global Information Sharing. IEEE Computer Society Press,
Los Alamitos, California, 1994.

[Kno95] Craig A. Knoblock. Planning executing, sensing and replanning for information gath-
ering. In Proceedings of the 1fth International Joint Conference on Artificial Intelli-
gence, 1995.

[KS95] David Konopnicki and Oded Shmueli. W3QS: A query system for the WWW. In

Proceedings of the 21st VLDB Conference, Zurich, Switzerland, 1995.

[LMR90] Witold Litwin, Leo Mark, and Nick Roussopoulos. Interoperability of multiple au-
tonomous databases. ACM Computing Surveys, 22 (3):267-293, 1990.

24

www.manaraa.com

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answer-
ing queries using views. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, San Jose, CA, 1995.

[LO95] Alon Y. Levy and Joann J. Ordille. Integrating internet information sources. In Work-
ing Notes of the AAAI Fall Symposium on AI Applications in Knowledge Navigation,
1995.

[LRU96] Alon Y. Levy, Anand Rajaraman, and Jeffrey D. Ullman. Answering queries using lim-
ited external processors. In Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, Montreal, Canada (to appear), 1996.

[L.S93] Alon Y. Levy and Yehoshua Sagiv. Queries independent of updates. In Proceedings
of the 19th VLDB Conference, Dublin, Ireland, pages 171-181, 1993.

[LSK95] Alon Y. Levy, Divesh Srivastava, and Thomas Kirk. Data model and query evaluation
in global information systems. Journal of Intelligent Information Systems, Special
Issue on Networked Information Discovery and Retrieval, 5 (2), September 1995.

[Mor88] K. A. Morris. An algorithm for ordering subgoals in NAIL! In Proceedings of the
FEleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 82—-88, 1988.

[OM93] Joann J. Ordille and Barton P. Miller. Distributed active catalogs and meta-data
caching in descriptive name services. In Proceedings of the 13th International IFEFE
Conference on Distributed Computing Systems, Pittsburgh, USA, pages 120-129, 1993.

[Ord93] Joann J. Ordille. Descriptive Name Services for Large Internets. PhD thesis, Univer-
sity of Wisconsin, Madison, WI, 1993.

[PGGMU95] Yannis Papakonstantinou, Ashish Gupta, Hector Garcia-Molina, and Jeffrey D. Ull-
man. A query translation scheme for rapid implementation of wrappers. In Proceedings
of the Conference on Deductive and Object Oriented Databases, (DOOD), 1995.

[Qia95] Xiaolei Qian. Query folding. Technical Report SRI-CSL-95-09, Stanford Research
Institute, Menlo Park, California, 1995.

[RSU95] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries using
templates with binding patterns. In Proceedings of the 14th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, San Jose, CA, 1995.

[RU96] Anand Rajaraman and Jeffrey D. Ullman. Integrating information by outerjoins
and full disjunctions. To appear in the Proceedings of the Fifteenth Sympo-
sium on Principles of Database Systems (PODS). Available by anonymous ftp from
db.stanford.edu as the file pub/rajaraman/1995/outerjoin.ps, 1996.

[SABT95] V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. Lu, A. Rajput, T. Rogers,
R. Ross, and C. Ward. HERMES: A heterogeneous reasoning and mediator system.
Technical report, University of Maryland, 1995.

25

www.manaraa.com

[WACT93] Darrel Woelk, Paul Attie, Phil Cannata, Greg Meredith, Amit Seth, Munindar Sing,
and Christine Tomlinson. Task scheduling using intertask dependencies in Carnot. In
Proceedings of the 1993 ACM SIGMOD International Conference on Management of
Data, pages 491-494, 1993.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, pages 38-49, 1992.

[YL87] H. Z. Yang and P. A. Larson. Query transformation for PSJ-queries. In Proceedings
of the 13th International VLDB Conference, pages 245-254, 1987.

26

www.manharaa.com

